MATH 2230BC Tutorial Note 8

1. Find the Taylor series for

around z = 0. Give the radius of convergence.

Solution We start by writing the Taylor series for each of the factors and then multiply
them out.

2 3 Z4

z z
f(z):(1+Z+E+§+E+"')(1+2+22+Z3+"')
1 5 1 1 5
:1+(1+1)Z+(1+1+§)Z +(1+1+§+§)Z + -

The biggest disk around z = 0 where f is analytic is 2| < 1. Therefore, by Taylor’s
theorem, the radius of convergence is R = 1.

2. Find the Taylor series for

around z = 5. Give the radius of convergence.

Solution We have to manipulate this into standard geometric series form
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So the series converges when @ <1, ie. |z—5| <4

3. Expand the rational function
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around z = 0.

Solution Note that f has a singularity at 0, so we can’t expect a convergent Taylor series
expansion. We rewrite f(z) as
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4. Suppose that C' = |z| = 5

Solution Note that
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oriented counterclockwise. Compute
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